If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5b^2+20b-57=0
a = 5; b = 20; c = -57;
Δ = b2-4ac
Δ = 202-4·5·(-57)
Δ = 1540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1540}=\sqrt{4*385}=\sqrt{4}*\sqrt{385}=2\sqrt{385}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{385}}{2*5}=\frac{-20-2\sqrt{385}}{10} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{385}}{2*5}=\frac{-20+2\sqrt{385}}{10} $
| m=23=-21 | | -6−3t=-4t | | ∣5x+9∣= 4x | | 9+7n=10n | | 12(3-b)=0 | | -2y+2=-3y | | y/2-8=-30 | | 2z+-19z+12z=-10 | | 1=-5+r | | -10w+13w=-24 | | 10−7h=-8h | | -35-7x=-7x(x+5) | | 1.331=c | | 2x+3-x³=x²-1 | | -10w+13w−-10=-14 | | 4y-10=3 | | x+22-3=180 | | -5+9(4b+9)=-5b+240 | | (x+3)+(x-5)=24 | | 32−3n=2n−1832-3n=2n-18 | | 62-x=8 | | (3x-10)-(2x-3)=-19 | | -11u-(-17u)=-18 | | 36=(11x-1) | | 2,84*28/y=28y | | 11×2=8x | | 14x=-8+6 | | 7(a+3)=-14a | | 8x=11×2 | | 19p-16p=18 | | 117-x=5 | | -2x−-9x−10x−6x−-6x=-12 |